
CITA/ CSCI 140  

Practice Problems for Test 1  
If I give problems that are connected such as Problems 1, 2, 3, 4, I will make sure that they are not dependent upon one 
another. In that way, if you have issues with one of them, it will not prevent you from being success with another 
problem/task.  

Problem 1 
From skills learned by Chapter 2, use triangles to draw 
a Christmas tree similar to the one shown. There is no 
need for variables because it will not move.  
Specifications:  

 Set screen size to 600 X 400 
 Must use triangles  
 The Christmas tree must be symmetric and 

colored green. The trunk should be brown.  
 There are no other specifications on size or 

position of tree.  
 Save as cedar_tree.pde 

 
 
 
 

Problem 2 
From skills learned by Chapter 2, add to the 
cedar_tree sketch by drawing two mountains. There is 
no need for variables because the mountains will not 
move. Start by opening cedar_tree.pde.  
Specifications:  

 Use a single set of beginShape/endShape to 
draw two connected mountains similar to the 
illustration   

 The mountains must be behind the Christmas 
tree.  

 The mountains must be some shade of brown.   
 There are no other specifications.  
 Save as mountain_tree.pde 

 
 



Problem 3  
Using skills learned in Chapter 4, add a sunrise to the 
mountain/tree scene. Start by opening mountain_tree.pde 
Specifications:  

 The sun starts near the bottom left and is completely 
hidden by the mountains initially.  

 In a diagonal movement, the sun rises from the bottom left 
to set near the top left. It never leaves the screen 
completely.  

 Save it as sunrise.pde. 
 
 

Problem 4 
Use the constrain() function (from Chap. 6) to keep the sun from 
leaving the screen. Start by Opening sunrise.pde.   
Specifications:  

 There are not specs on exactly where it stops, as long as 
it’s somewhere in top right area.  

 Save as constrain_sun.pde. 
 
 
 
 

Problem 5 
From skills learned in Chapter 4, move the simple green car to the right. Simultaneously, move the simple cloud 
backwards to the left.    
Specifications:  

 Begin with the starter code below.  
 Put in dynamic mode with draw() and setup() 
 Change the necessary constant numbers to variables.  
 Write the code to create the movement 
 It’s OK for them to go off screen.  
 Save as opposite_move.pde 

 
/* This one is a super simple rendition of a cloud going  
   in one direction and car going in another  
   Only horizontal movement is happening. 
   Start by creating variable(s) and go from there. 
*/ 
  
  size(350, 200);  
  background(#1286E3);  
 
//The cloud 
  fill(255);  
  noStroke();  
  ellipse(280, 40, 80, 60);  
  ellipse(260, 50, 65, 50); 
  
  stroke(150);  
//The grass 
  fill(5,125, 10);  
  rect(0, 130, width, height-130);  
   
 //The car  
  fill(250, 20, 10); 
  rect(10, 120, 80, 30, 15,15,0,0); 



PROBLEM 6  
This is my Exercise 2-9 character—Pink Pop. He has lost part of his glasses and his 
teeth. You are to put glasses and teeth back on the character.   
Specifications:  

 Start with this code below. 
 Use arcs to put the rest of his glasses on. To aid you, I left the top of his 

glasses on the bridge of his nose. The glasses do not have to be identical 
to mine but must use arcs.  

 Shade the glasses in translucent blue 
 Put at least two teeth in, using rectangles with round bottoms.  
 Save as complete_pop.pde 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem 7 
Using Exercise 5-5 as the starter code, write a program where the specified three 
actions occur when the mouse rolls over the rectangle.  
Specifications:  
In summary, when mouseX and mouseY hover over the rectangle, the size 
increases, the color changes, and text displays on screen. Here are the specifics. 
 

1. The size (w & h) increases until it is off the page.  
2. The rectangle fills with red. 
3. Red text is displayed at 20x and 20y that says, “I’m growing” 

 
The illustration shows what it looks like while the mouse is on it and it has grown 
off the page.  
 

//Exercise 2-9, my Pink Pop  
size(400, 600);  
background(#ffff78); 
rectMode(CENTER);  
 
//hot pink head 
fill(#FF4DEB);  
circle(200,180,230); 
 
//eyeglasses 
stroke(#fafa80); 
strokeWeight(2); 
  
 
noFill();  
arc(200, 135, 60, 40, PI, TWO_PI);//yellow bridge of eyeglasses 
strokeWeight(1); 
stroke(#BC0D82); 
 
rect(200, 155, 36, 70,    0, 0, 20, 20); //Nose 
 
fill(0); //little black eyes 
circle(150, 140, 12); 
circle(250, 140, 12); 
//continuation of nows 
 stroke(#BC0D82);  
strokeWeight(3); 
strokeCap(SQUARE);  
line(182, 140, 200, 140); 
line(182, 150, 200, 150); 
line(182, 160, 200, 160); 
 
//eyebrows 
noFill();  
strokeWeight(4);  
arc(140, 120, 30, 20,   PI, TWO_PI); 
arc(260, 120, 30, 20,  PI, TWO_PI); 
strokeWeight(1);  
 
//Mouth & teeth 
fill(#FFBCE9); 
rect(200, 230, 160, 50, 40); 
fill(255); 
  
//stick 
strokeCap(ROUND); 
strokeWeight(10);  
line(200,298, 200, 590);  
 
//shadow 
noStroke();  
fill(150, 150);  
ellipse(200, 580, 200,60); 



Problem 8  
Using the idea from Exercise 4-6, I’ve created a simplified 
program consisting of a circle at the bottom of the screen. 
The goal is to make it move upwards, jiggle when it gets 
halfway up the screen, then println when it’s off the screen.  
Specifications: 

 Move the circle upwards and ultimately off the 
screen.  

 When the circle gets halfway up the screen, make it 
shake left and right as it moves up, i.e., it jiggles. 
(Hint: random, starting with a negative number)  

 When it leaves the screen completely, print a line 
that says “Little Zoog has left the Building” 

 Save as jiggle.pde 
 
 
 
 
 
 
 
 
 
 

Problem 9 
Remix Example 5-3 on page 79 as described in the specifications below:  
 
Specifications: 

 Create an int variable called size and set at 80. Then replace each rectangle’s width 
and height with the size variable.  

 Set each x and y positions so that the rectangles are centered vertically and 
horizontally. 

 Save as remix_example5_3.pde 
 

Problem 10  
Create a button that turns a smiley face on and off in the following manner 
specified below  
Specifications:  

 The size of the window and objects do not matter.  
 Create the necessary variables and other parts of the program.  
 If the boolean variable is true, the face is yellow and smiling with an arc. 
 If variable is false, face is blue and frowning with a different arc.  It doesn’t matter whether you use fill() or 

stroke() to specify the sad and happy mood.  

 
//A simplified zoog jiggles off the screen  
float x = 100;  
float y = 300;  
int size = 40;  
  
void setup() { 
  size(200, 300);  
} 
 
void draw() { 
  background(#F5F555); 
  circle(x, y, size);    
  fill(255);  
  
} 



Problem 11  
Create a program where a 6 sided dice is rolled. If the random number is 3 or 5, display println text “You Win”. 
Otherwise, display “You lose”. 
Specifications:  

 Use random() to generate an integer between 1 and 6.  
 There are no additional specifications beyond the ones noted above.  
 Save as dice_roll.pde.   

 

 
 
 



Problem 12  
Using the starter code of the sticks, please add lollipops or popsicles to them. 
Specifications:  

 Use random() to generate random colors of any kind you wish.  
 If you create popsicles, they must have round tops and square bottoms, and be centered on the stick. 
 If you create lollipops, you must reduce the stroke weight and change the strokecap to square. 
 Background does not matter.  
 Save as loopy_pops.pde  

 

 
 

 
 

 
 
 

 

  

 

 

//Here are some sticks; please add lollipops or 
popsicles 
size(500, 200);  
stroke(0); 
background(255);  
 
for (int x = 20; x < width; x = x+50) { 
  stroke(#E0CC93); //beige for stick 
  strokeWeight(10); 
  line(x, 150, x, 90); 


	Problem 1
	Specifications: 

	Problem 2
	Specifications: 

	Problem 3 
	Specifications: 

	Problem 4
	Problem 5
	Specifications: 

	PROBLEM 6 
	Specifications: 

	Problem 7
	Specifications: 

	Problem 8 
	Specifications:

	Problem 9
	Specifications:

	Problem 10 
	Specifications: 

	Problem 11 
	Specifications: 

	Problem 12 
	Specifications: 


